高性价比共焦拉曼成像系统!
高分辨率!
出色的重复性!
使用全息透射光栅,光透过率高!
可扩展/ 定制!
200µm x 200µm 图像快速扫描 & 2D Mapping!
韩国NANOBASE公司专业生产高性价比共聚焦激光拉曼成像系统,为科学和工业领域提供*高性价比解决方案。 韩国NANOBASE公司 XperRam200共聚焦激光拉曼光谱成像系统功能强大,选项完备,操作简单,便于维护。XperRam200共聚焦拉曼成像光谱仪系统使用户可以提供各种可扩展功能,并可为客户提供量身定制的可定制化的服务。
关键词:共焦拉曼成像系统,共聚焦拉曼成像系统,共焦拉曼光谱成像系统,共焦拉曼成像光谱仪系统,拉曼光谱仪,成像光谱仪,激光拉曼成像系统, 显微拉曼成像系统
XperRam 200共聚焦拉曼成像系统
韩国NANOBASE公司专业生产高性价比共聚焦拉曼成像系统,为科学和工业领域提供*高性价比解决方案。 韩国NANOBASE公司 XperRam200共聚焦拉曼光谱成像系统功能强大,选项完备,操作简单,便于维护。XperRam200共聚焦拉曼成像光谱仪系统使用户可以提供各种可扩展功能,并可为客户提供量身定制的可定制化的服务。
主要功能:
显微,mapping,成像
实时响应监测
质量控制
在线检测
性能优势:
激光扫描:
- 优越的分辨率 & 重复性
resolution < 0.02 um & repeatability < 0.1 μm.
- 大面积拉曼成像范围
scan area exceeding 200 x 200 μm using a 40X, NA=0.75 objective
- 接近衍射极限的光斑,覆盖扫描区域
独有的透射式体相位全息光栅技术
- 同类产品中*高的衍射效率,高光透过率
- 偏振相关性小
平均模式
- 高速平均模式
4秒内能获得200 x 200 µm区域的某一拉曼光谱
- *小化CCD 读出噪声影响,
CCD在激光扫描同时获取拉曼光谱,能很大程度减少传统2D拉曼mapping方法中无法避免的读出噪声的影响
- 快速定量分析
能有效的快速分析载玻片中薄膜样品或纳米微粒
模块化设计(可选项)
- 光纤耦合激光器端口
- 针对多种波长的嵌入式滤波器
- 起偏器
- 窄贷拉曼滤波器选项(低至10 cm-1)
- NIR近红外选项 (700 ~ 1000 nm)
主要技术参数
激光器
532nm,up to 100mW DPSS laser
(Otherlaser sources such as 660nm,785nm are available )
显微镜
Large-size mechanical stage with right-hand control
Reflected LED illuminator for bright field
Quintuple Revolving Nosepiece
USB2.0 Full HD camera
标准物镜
x40 NA=0.75 ""
>60% transmission from 360 to 1000 nm
光谱仪(XPE200)
Input f/5
Focal length 200 mm
1800 lpmm VPHG grating (for 532nm excitation)
Micrometer for center wavelength adjustment
FWHM resolution ~ 0.12 nm
Dispersion ~0.038 nm/pixel (16um/pixel)
探测器
Most Andor and PI cameras can be used
可选配置
单模保偏光纤FC/PC接口
Achromatic collimator for 450~680 nm
No moving parts
光偏振控制
>> Excitation polarization control
0~180°continuous rotation of excitation laser polarization
Operating wavelength : 532+/-20nm
Utilize a zero order half wave plate>>Collection polarizer
Operating wavelength: 420~700 nm-
Extinction ratio > 200:1
Transmission > 83%
窄贷滤波器 (OD7)
>>Bandpass filter
Bandwidth (FWHM) < 0.3 nm
Diffraction efficiency > 90%
>>Notch filte
Blocking > 99.9999% (OD3 + OD3)
Transmission > 50%
Bandwidth (FWHM) < 0.5 nm
Optimized for raster scan
Wavelength range: 450 ~ 700 nm
FOV: 200 X 200 um using a 40X objective
Single Protected silver mirror (450~1000 nm) for XY scan
>> Laser scan controller
USB 1.1-Labview example provided
激光功率控制
Variable ND filter (OD 0.04~4)
Laser power monitor photodiode output (BNC connector)
主要应用:
生物
- Cell research / Disease detection / Stents and implants
- Cosmetics and in vivo skin analysis
法医检测
-The non-destructive and in-situ identification of controlled drugs and narcotics.
制药学, 化妆品和食品学
-Characterization and Mapping of active pharmaceutical ingredients and excipients
半导体,太阳能电池和OLED
-Strain measurements of a Si cap layer deposited on a SiGe substrate determination of Ge content - Defects identification during the manufacturing process
- Defects identification during the manufacturing process
固体状态材料
- Analysis of Solid State Chemical Reactions and Composite
什么是VPHG(体相位全息光栅)
体相全息Volume Phase Holographic (VPH) 衍射光栅技术的光谱仪相对于传统的刻划光栅,具有颜色效率高,受偏振影响小的特点,同时牢固耐用,是理想的**光谱和光通讯仪器。
What are VPH diffraction gratings?
The most commonly used gratings are generally ruled or etched using either a process involving the mechanical scratching of the surface of a substrate, or exposure of a photoresist layer deposited on a substrate.where the interference pattern produced by two coherent light beams is used to expose the photoresist. The diffraction gratings produced with this process are often called holographic. Both of these processes are used to create a fine, periodic relief pattern on the surface of a blank substrate. Such a relief structure can predictably modify the amplitude and/or phase of the incident light. The superposition of the effects of many such grooves allows for the angular separation of the spectral components of the incident light. Depending on whether the light is reflected from the grooved surface, or transmitted through it, the grating is called either a reflection or transmission diffraction grating.
A typical VPH grating manufacture process is illustrated below. A layer of photosensitive gel is enclosed by two substrates. Usage of gel between two substrates gives many more degrees of freedom in the spectral response of these gratings. The width, shape and depth of the fringes all affect the grating performance.